1 5 Ju n 20 04 DETERMINANT EXPRESSIONS FOR HYPERELLIPTIC FUNCTIONS ( with an Appendix by Shigeki Matsutani ) YOSHIHIRO ÔNISHI

نویسندگان

  • Shigeki Matsutani
  • YOSHIHIRO ÔNISHI
  • Yoshihiro Ônishi
چکیده

Although this formula can be obtained by a limiting process from (0.1), it was found before [11] by the paper of Kiepert [13]. If we set y(u) = 1 2℘ ′(u) and x(u) = ℘(u), then we have an equation y(u) = x(u)+ · · · , that is a defining equation of the elliptic curve to which the functions ℘(u) and σ(u) are attached. Here the complex number u and the coordinate (x(u), y(u)) correspond by the equality

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinant Expressions for Hyperelliptic Functions ( with an Appendix by Shigeki Matsutani ) Yoshihiro

Although this formula can be obtained by a limiting process from (0.1), it was found before [FS] by the paper of Kiepert [K]. If we set y(u) = 12℘ ′(u) and x(u) = ℘(u), then we have an equation y(u) = x(u)+ · · · , that is a defining equation of the elliptic curve to which the functions ℘(u) and σ(u) are attached. Here the complex number u and the coordinate (x(u), y(u)) correspond by the equality

متن کامل

A pr 2 00 2 Determinant Expressions for Hyperelliptic Functions ( with an Appendix by Shigeki Matsutani )

Although this formula can be obtained by a limiting process from (0.1), it was found before [FS] by the paper of Kiepert [K]. If we set y(u) = 12℘ ′(u) and x(u) = ℘(u), then we have an equation y(u) = x(u)+ · · · , that is a defining equation of the elliptic curve to which the functions ℘(u) and σ(u) are attached. Here the complex number u and the coordinate (x(u), y(u)) correspond by the equality

متن کامل

00 2 Determinant Expressions for Hyperelliptic Functions ( with an Appendix by Shigeki Matsutani )

Although this formula can be obtained by a limiting process from (0.1), it was found before [FS] by the paper of Kiepert [K]. If we set y(u) = 12℘ ′(u) and x(u) = ℘(u), then we have an equation y(u) = x(u)+ · · · , that is a defining equation of the elliptic curve to which the functions ℘(u) and σ(u) are attached. Here the complex number u and the coordinate (x(u), y(u)) correspond by the equality

متن کامل

Determinant Expressions for Hyperelliptic Functions

(−1)(1!2! · · · (n− 1)!) σ(nu) σ(u)n = ∣∣∣∣∣∣∣ ℘ ℘ · · · ℘ ℘ ℘ · · · ℘ .. .. . . . .. ℘ ℘ · · · ℘ ∣∣∣∣∣∣∣ (u). (0.2) Although this formula can be obtained by a limiting process from (0.1), it was found before [FS] by the paper of Kiepert [K]. If we set y(u) = 1 2℘ (u) and x(u) = ℘(u), then we have an equation y(u) = x(u)+ · · · , that is a defining equation of the elliptic curve to which the fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008